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The spin interaction of a hole confined in a quantum dot with the surrounding nuclei is described in terms
of an effective magnetic field. We show that, in contrast to the Fermi contact hyperfine interaction for con-
duction electrons, the dipole-dipole hyperfine interaction is anisotropic for a hole, for both pure or mixed hole
states. We evaluate the coupling constants of the hole-nuclear interaction and demonstrate that they are only 1
order of magnitude smaller than the coupling constants of the electron-nuclear interaction. We also study,
theoretically, the hole–spin dephasing of an ensemble of quantum dots via the hyperfine interaction in the
framework of frozen fluctuations of the nuclear field, in the absence or in the presence of an applied magnetic
field. We also discuss experiments which could evidence the dipole-dipole hyperfine interaction and give
information on hole mixing.
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I. INTRODUCTION

The spin of an individual electron, confined in a quantum
dot �QD�, is currently considered as a potential candidate for
the realization of spintronic and quantum information pro-
cessing in solid-state-based devices.1–3 While in bulk or
quantum wells, the electronic spin is efficiently relaxed by
processes related to the spin-orbit coupling, such as the
D’yakonov-Perel mechanism,4 the spatial confinement of
carriers in semiconductor QDs significantly reduces the re-
laxation and decoherence processes. Recently, the hyperfine
coupling with the spins of the lattice nuclei has been identi-
fied as the ultimate limit, at low temperature, to the electron
spin relaxation or decoherence in QDs.

For conduction electrons, the hyperfine interaction has a
Fermi contact character and is at the origin of ensemble
dephasing times of the order of 1 ns in III-V QDs.5–9 For
holes, the Fermi contact coupling is massively suppressed
because of the p symmetry of the valence-band states. The
hyperfine interaction is then induced by the weaker long-
range dipole-dipole coupling,10 so that much longer relax-
ation and decoherence times are expected.11

Recent progresses in the preparation and reading of an
ensemble of hole spins12 or of a single hole spin, confined
in QD, offer the opportunity to study their dynamics. By
inserting single QDs in n-i Schottky diode structures, Heiss
et al.13 and Ramsay et al.14 evidenced the possibility to ini-
tialize and store hole spins, as previously done with conduc-
tion electrons,15 while measuring the time dependence of
their polarization. In the present work, we show that while
being weaker than the electron Fermi contact interaction, the
long-range dipole-dipole coupling between holes and nuclei
can be an efficient decoherence mechanism and leads to en-
semble dephasing times of the order of 10 ns in III-V QDs.

This paper is organized as follows. In Sec. II, the hyper-
fine dipole-dipole coupling between nuclear spins and the
spin of a hole is written in terms of an effective nuclear
magnetic field acting on the hole spin. In this section, differ-
ent hole states are considered: pure heavy-hole �hh�, light-
hole �lh�, or mixed hole states. In Sec. III, the hole–spin
dynamics in the absence or in the presence of an external

magnetic field is calculated. In Sec. IV, different experimen-
tal configurations are discussed.

II. HYPERFINE INTERACTION OF A CONFINED
VALENCE ELECTRON WITH NUCLEI

In this section, we will first consider the hyperfine cou-
pling between lattice nuclei and pure valence hh �lh� states
�Sec. II A�. Because such pure heavy or light states are only
found in specific QD �typically large island in thin quantum
well or particular pyramidal QD �Ref. 16��, we will then
consider hyperfine interaction on mixed hh-lh states �II B�.
Zinc-blende type cubic semiconductors, with a direct gap at
� point, will be considered.

A. Hyperfine coupling for a pure heavy or light hole

In contrast to electrons in the conduction band, the contact
hyperfine interaction of a hole with nuclear spins is negli-
gible because holes in valence bands are described by
p-symmetry Bloch functions. Then, the hyperfine interaction
of nuclear spins with an electron in the valence band has a
dipole-dipole nature. For a given nucleus, the Hamiltonian of
this interaction writes17

Hdd�I�� = 2�B
�I

I
I� · � ��

�3 −
s�

�3 + 3
���s� · ���

�5 � , �1�

where �B is the Bohr magneton and �I is the nuclear

magnetic moment; I� is the nuclear spin operator; �� is the
electron position vector with origin at the nucleus position;
�� =�� � p� / � and s� are the orbital momentum and spin opera-
tors, respectively.

A detailed calculation of the matrix elements of Hamil-
tonian Hdd, in the hh and lh bases, is presented in Appendix
A. With the hyperfine interaction being very small compared
to the hh-lh splitting �lh, one can separate the 4�4 matrix
Hdd into two 2�2 matrices defined on the hh ��3/2= �J
=3 /2,Jz= �3 /2� and lh ��1/2= �J=3 /2,Jz= �1 /2� bases
�the z direction is aligned along the �001� direction, growth
axis of the QD�,
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�Hdd�hh =
8�B�I

5I
�	�R� ��2
	 1

�3
�Iz 0

0 − Iz
�

��+3/2,�−3/2�
,

�2a�

�Hdd�lh =
8�B�I

15I
�	� �R� ��2
	 1

�3

�� Iz − 2�Ix − iIy�

− 2�Ix + iIy� − Iz
�

��+1/2,�−1/2�
,�2b�

where 	�R� � and 	� �R� � are the envelope functions of the
��3/2 and ��1/2 valence holes, respectively, taken at the

nucleus position R� ; Ii �i=x ,y ,z� are the nuclear spin compo-
nents; 
 1

�3 � is defined in Appendix A; 
 is the unit cell vol-
ume, containing two atoms.

We underline here that expressions �2a� and �2b� clearly
show that the hole-nuclear hyperfine interaction is aniso-
tropic in the nuclear spin components. For hh states, the
hyperfine coupling is only induced by the nuclear spin com-
ponents along the z axis, while for lh states, this coupling
arises from all the nuclear spin components and mainly from
the in-plane ones.

The absence of a valence electron, i.e., a hole, confined in
a QD, interacts with a large number of nuclei. Then one has
to consider the total hyperfine Hamiltonian

Hhf = �
j

Hdd�R� j,I�
j� , �3�

where the summation runs over all the nuclei j, with position

R� j and spin I�j.
For hh states, this hyperfine interaction can be described

in the hh basis by the effective Hamiltonian

Hhf
h = 
�

j

Cj�	�R� j��2Iz
jSz

h, �4�

where S�h is a pseudospin with states Sz
h= �1 /2 associated to

the hh Jz= �3 /2 states. The dipole-dipole hyperfine con-
stants Cj are defined as follows:

Cj =
16

5

�B�I
j

Ij 	 1

�3

j
. �5�

It is then possible to define a nuclear field operator acting on
the hh spin in a QD,

B� N
h =




gh�B
�

j

Cj�	�R� j��2Iz
je�z, �6�

with e�z the unitary vector along the z direction, and gh is the
hh Landé factor; the right component of gh to be set in Eq.
�6� is experimentally related to the direction of an external
magnetic field �applied along a principal direction of the
sample�. The magnitude of this field, aligned along z, is ran-
domly distributed from a QD to another QD, and the ran-
domness is described by a one-dimensional �1D� Gaussian
probability density distribution,

P�BNz
h � =

1

�1/2�hexp�−
�BNz

h �2

��h�2 � , �7�

where �h is the quadratic average of the nuclear field com-
ponent, defined as

��h�2 = 2
�BNz
h �2� =

2

3
� 


gh�B
�2

�
j

Ij�Ij + 1��Cj�2�	�R� j��4.

�8�

As in Ref. 5, this parameter can be related to NL, the
number of nuclei inside the QD,

�h =
1

gh�B

�4� j
Ij�Ij + 1��Cj�2

3NL
, �9�

where the summation is on all the nuclear species j.
For lh states, the hyperfine interaction is sensitive to all

the nuclear components and can be written as

Hhf
l = 
�

j

Cj

3
�	� �R� j��2�− 2Ix

jSx
l − 2Iy

jSy
l + Iz

jSz
l� . �10�

This leads to an effective nuclear field

B� N
l =




gl�B
�

j

Cj

3
�	� �R� j��2�− 2Ix

je�x − 2Iy
j e�y + Iz

je�z� , �11�

where e�x, e�y, and e�z are the unitary vectors along the x, y, and
z directions, respectively; gl is the component of the lh
Landé tensor corresponding to the direction of an applied
magnetic field. Its magnitude and direction are described by
a three-dimensional �3D� Gaussian probability density distri-
bution,

P�B� N
l � =

1

�3/2��
2��

exp�−
�BNx

l �2

��
2 −

�BNy
l �2

��
2 −

�BNz
l �2

��
2 � ,

�12�

��
2 = 4��

2 =
8

3
� 


gl�B
�2

�
j

Ij�Ij + 1��Cj

3
�2

�	� �R� j��4. �13�

B. Hyperfine coupling for mixed hole states

1. Valence-band mixing

Valence-band mixing arises from QD anisotropy, which
can be induced by shape or strain. For instance, a symmetry
reduction due to the confinement geometry of the dot induces
hole mixing through the off-diagonal terms of the Luttinger-
Kohn Hamiltonian.18 Another source of valence states mix-
ing can be the absence of inversion symmetry in the growth
direction due to the dot shape or the intermixing chemical
profile at the interfaces.19 For flat and weakly elongated
QDs, those contributions to valence mixing are expected to
be small.

Several recent experiments have evidenced the mixed
character of the hole states in self-assembled QDs. An effi-
cient mixing between the hh and lh states can arise from the
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anisotropic relaxations of strain in the QDs.20–22 While grow-
ing InAs on GaAs, InAs is compressed in the growth plane
and distended in the growth direction; elastic and inelastic
strain relaxations are involved in each QD. The Luttinger-
Kohn Hamiltonian including strain effects23 is given in Ap-
pendix B for a QD. Due to the spin-orbit interaction, it is
adequate to limit the discussion to the states of angular mo-
mentum J=3 /2, defined in Appendix B. The confinement
potential and the biaxial strain are responsible for a strong
lift of degeneracy, denoted as �lh, between the valence-band
states ��3/2 and ��1/2. As in Ref. 20, we will mainly con-
sider the effects of strain anisotropy in the growth plane and
describe the strain on a QD by average values of �xy and
�xx−�yy ��ij denotes the ij component of the strain tensor�. In
this approximation, the Hamiltonian can be written, in the
��+3/2 ,�−1/2 ,�−3/2 ,�+1/2� basis, as

�
�lh − R 0 0

− R� 0 0 0

0 0 �lh − R�

0 0 − R 0
� , �14�

with R=−
�3
2 bv��xx−�yy�+ idv�xy, where bv and dv are the de-

formation potentials for the valence band ��ij =0 for i or j
=z�.

The modified hh states can then be written as

�̃+3/2 =
1

�1 + �
�2
��+3/2 + 
�−1/2� and

�̃−3/2 =
1

�1 + �
�2
��−3/2 + 
��+1/2� , �15�

with


 = �
�ei� = i
dv�xy

�lh
+

�3

2

bv��xx − �yy�
�lh

. �16�

In the following, we will limit our calculations to the first
order in 
 and will assume identical envelope functions for

the hh and lh states ���R� �=1 in Appendix A�.

2. Hyperfine interaction for mixed hh-lh states

From the results of Sec. II B 1, it is possible to show that
the hyperfine interaction writes, in the basis of the mixed
states ��̃+3/2 , �̃−3/2�,

Hhf = 
�
j

Cj�	�R� j��2�2�
�
�3

�Ĩx
jSx + Ĩy

jSy� + Ĩz
jSz� , �17�

with Ĩx=cos �Ix−sin �Iy, Ĩy =sin �Ix+cos �Iy, and Ĩz= Iz. I�̃ is

thus obtained by a � rotation of I� around z. Because of the
z-rotation invariance of the nuclear field fluctuation distribu-

tion, changing I�̃ into I� has no incidence on the dynamics of
the QD ensemble.

The hyperfine interaction is anisotropic, either for pure or
mixed hole states. We then propose to consider a general
expression of the hyperfine Hamiltonian, which will be use-
ful for pure or mixed states. Assuming an anisotropy factor
�, the hyperfine coupling can be written as

Hhf = 
�
j

Mj�	�R� j��2���Ix
jSx + Iy

jSy� + Iz
jSz� , �18�

with �=0, �=2 �i.e., �=−2, the ensemble dynamics is inde-
pendent of the sign of ��, and �=1 for pure hh, lh, and
conduction electron, respectively. Small nonzero values of
�=2�
� /�3 will be associated to mixed hh-lh states. The hy-
perfine constants are Mj =Aj,

5 Mj =Cj, or Mj =Cj /3 for the
conduction electron, the pure hh state, and the lh state, re-
spectively; Mj =Cj for the mixed hh-lh states of Eq. �15�.

The considered spin is then submitted to an effective
nuclear field,

B� N =



g�B
�

j

Mj�	�R� j��2���Ix
je�x + Iy

j e�y� + Iz
je�z� , �19�

with g as the Landé factor of the considered state. Once
again, the nuclear field components are assumed to follow a
Gaussian distribution,

P�B� N� =
1

�3/2�2�0
3exp�−

�BNx�2

�2�0
2 −

�BNy
�2

�2�0
2 −

�BNz�2

�0
2 � ,

�20�

with

�0
2 =

2

3
� 


g�B
�2

�
j

Ij�Ij + 1��Mj�2�	�R� j��4. �21�

In Table I,24–27 we have reported, for different atomic spe-
cies, values of the hyperfine constants: Aj �as defined in Ref.
5� for a conduction electron and Cj for a hh. To estimate

TABLE I. Values of the hyperfine coupling parameter Mj for an
electron �Mj =Aj� and a heavy hole �Mj =Cj� for different species j
of atoms found in common III-V and II-VI compounds.

Species

Mj �µeV�

I
Isotope concentration

�%�Electrona,b Heavy holec,d

Ga 38 3.0 3/2 100

In 56 4.0 9/2 100

As 46 4.4 3/2 100

Al 1.2 5/2 100

Cd −30 −3.9 1/2 25

Te −45 −16.5 1/2 7.9

Se 6.5 1/2 7.6

S 1.4 3/2 0.75

Zn 0.7 5/2 4.1

aReference 24.
bReference 25.
cReference 26.
dReference 27.
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them, we have used the calculated and measured values of

the parameters �uc�0��� �value of the conduction Bloch func-
tion at the nucleus position� and 
 1

�3 �. The last column of
Table I gives the natural concentration of isotopes carrying a
nonzero nuclear spin. The main information is that the hy-
perfine constant for hh is typically 1 order of magnitude
smaller than for electrons; this differs from the common hy-
pothesis that the hole-nuclear interaction is fully negligible
and is in agreement with recent calculations of Fisher et al.11

One can also observe that, for a given carrier, the coupling
constants are comparable for III-V and II-VI compounds, so
that the amplitude of the hyperfine coupling with all the QD
nuclei mainly depends on the isotope distribution and the QD
size.

In Sec. III, we discuss the hole–spin dynamics in the ab-
sence or in the presence of an applied magnetic field. In the
first case, we will center our discussion on the influence of
the anisotropy of the interaction, and in the second case,
different configurations of the applied magnetic field will be
considered.

III. HOLE–SPIN DYNAMICS AND DEPHASING
FOR ENSEMBLES OF QDs

A. Hole–spin dephasing in a fluctuating nuclear field

To study the time dependence of an ensemble of hole
spins, one can follow the approach developed by Merkulov
et al.5 for an isotropic hyperfine interaction between nuclei
and conduction electrons. We neglect the nuclear dipole-
dipole interactions, which do not conserve the total spin of
the hole-nuclear system. These interactions become impor-
tant only at times longer than 10−4 s.

Let us consider an ensemble of identical QDs containing a

single hole, all prepared with the same initial spin S�0. Due to
the randomly oriented nuclear spins, the nuclear hyperfine
fields inside the dots differ from QD to QD and have a dif-
ferent effect on the initial hole spin.

As in Ref. 5, we consider the time dependence of the
ensemble average hole–spin relaxation for times that are
small compared to the period of the nuclear precession in the
hyperfine field of a hole �approximation of the frozen nuclear
field fluctuations�. In each QD, the hole spin precesses in a

total magnetic field B� +B� N, with B� as an applied magnetic
field. Because of the anisotropy of the nuclear field distribu-

tion, two cases are of particular interest: B� along the z axis
�the system stays invariant by rotation around the z axis� and

B� in the xy plane �so that any rotation invariance disappears�.
For an ensemble of spins in the initial state S�0=S0xe�x

+S0ye�y +S0ze�z, the time-dependent average spin 
S��t�� can be

deduced from the precession of S�0 in the random field B�

+B� N within each QD and is written as


S��t�� = �S0xRx�t� − S0yRy�t��e�x + �S0xRy�t� + S0yRx�t��e�y

+ S0zRz�t�e�z for B� � z , �22a�


S��t�� = S0xRx
1�t�e�x + �S0yRy

2�t� + S0zRy
1�t��e�y + �− S0yRz

2�t�

+ S0zRz
1�t��e�z for B� � x . �22b�

The expressions of Ri and Ri
j �i=x ,y ,z ; j=1,2� are given in

Appendix C.

B. Hole–spin dynamics in zero magnetic field
influence of the anisotropy

In the absence of an applied magnetic field, the average
hole spin is reduced to


S��t�� = S0xRx�t�e�x + S0yRx�t�e�y + S0zRz�t�e�z. �23�

As for the case of an isotropic hyperfine interaction �case of
conduction electrons�, we can define an ensemble dephasing
time T�0

from the coupling constants Mj,

T�0
=

�

g�B�0
= �� 3NL

4� j
Ij�Ij + 1�Mj

2
. �24�

Table II �Refs. 28–30� gives an overview of the estimated
dephasing times for electrons and hh for the most usually
studied III-V and II-VI QDs. We underline that the dephasing
times of the II-VI compounds are 3–10 times larger than the
dephasing times for III-V compounds due to the very low
natural abundance of isotopes with nonzero nuclear magnetic
moment �see Table I�.

In the following, we will study the average hole–spin dy-
namics and will use scaling laws by taking the normalized
magnetic field �= B

�0
and the normalized time �= t

T�0

. Figure 1

shows the time dependence of the Rz��� and Rx��� compo-

nents of 
S��t�� �see Eq. �23��, for anisotropy factors � vary-
ing from �=0 �pure hh state� to �=2 �pure lh state�.

For conduction electrons ��=1�, we retrieve the result of
Ref. 5, the ensemble average spin polarization decreases and
shows two regimes: the first regime consists of an initial fall
of the spin polarization, which makes it reach 4% of its ini-
tial value within a characteristic time 2T�0

; the second re-
gime is a plateau of the spin polarization, at 1/3 of its initial
value, reached from a typical time of 4T�0

.
Figure 1 also shows that Rz��� and Rx��� present the same

general behavior described for an isotropic interaction, for an

anisotropy factor ��0. The minimum is close to t=
2T�0

� , and
the value of this minimum of polarization depends on the
observed component and on the value of �. After a fast de-
crease in the spin components, one reaches a steady-state
value for the x and z components, with Rx����Rz��� for 1
�� and Rx����Rz��� for ��1. Figure 2 gives the steady-
state values for these two components as a function of the
anisotropy factor. Rz��� decreases from 1 to 0 when � in-
creases from 0 to ��1, while Rx��� increases from 0 to 1

2 .
The dynamics of the average spin polarization is very

different for pure hh states ��=0� prepared in the eigenstate
Sz

h= �1 /2 �Jz
h= �3 /2�. The randomly fluctuating nuclear

hyperfine field, aligned with z, then has no influence on the
average hh spin and no dephasing occurs; Rz��� remains con-
stant and is equal to 1, see black lines in Fig. 1. For an
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in-plane spin component, one observes a Gaussian time de-
pendence of the form Rx�t�=e−�t / 2T�0

�2
, reaching zero for t

�T�0
h, as already discussed in Eq. 11 of Ref. 11.

C. Hole–spin dynamics in the presence of an applied
magnetic field

In the following, for clarity, we limit ourselves to

the cases where B� �applied field� and S�0 are in the zx plane
�By =0 and S0y =0�.

1. Case B� ¸z

Figure 3 shows the time dependence of the different com-

ponents of 
S��t�� that appear in Eq. �22a� for pure hh ��
=0� and lh ��=2� spins. The curves were plotted versus the

reduced time �= t /T�0
and calculated for different values of

the reduced magnetic field �=B /�0. The upper curves of
Fig. 4 also show the time dependence of the Rx���, Ry���, and
Rz��� components for a mixed heavy-light hole ��=0.5�. In
the presence of an applied magnetic field, along z, all the
spin components tend to a steady-state value after several
oscillations. With increasing magnetic field, the frequency of
oscillation increases, and the steady-state value tends to 1 for
the longitudinal spin component Rz��� and reaches 0 for the
transverse components Rx��� and Ry���. In a general way,
for an ��0, the behavior of Rx���, Ry���, and Rz��� follows
the general trends obtained by Merkulov et al.5 for conduc-
tion electrons. For a pure hh ��=0�, however, a very differ-
ent behavior is observed; notably, for any field Rz���=1 and
Rx���=0.

In the high-field limit ���1�, the spin components can be
written, in the second order in �−1, as

Rx�t� =
�2

2�2 + ��1 −
�2

2�2 −
�2��2 − 1�

�2 � t

2T�0

�2�cos �Bt

−
�2

�

t

2T�0

sin �Bt�e−�t/2T�0
�2

, �25a�

TABLE II. Values of the dephasing time and of the nuclear field amplitude fluctuation for a QD of typical
size NL=6�104. The Landé factor is given for the carrier; gh

x and gh
z are, respectively, the in-plane and the

out-of-plane hh Landé factors.

QD composition
Electron T�0

�ns�
Heavy hole T�0

�ns�

Electron Heavy hole

�ge�
�0

�mT� �gh
z �

�0

�mT� �gh
x�

�0

�mT�

InAs 0.5 6.5 0.4a 57 1.6b 1.1 0.12b 15

GaAs 1.2 12 0.55c 17 2.24c 0.4 0.09c 10

CdTe 8.2 32 0.45d 3.1 0.53d 0.7 0.16d 2.2

CdSe 61 1.1 2.5f 0.07 0.38f 2.0

aReference 28.
bReference 22.
cReference 29.
dReference 20.
eReference 21.
fReference 30.
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FIG. 1. Time dependence of the out-of-plane, Rz���, and in-
plane, Rx���, components of the ensemble-averaged spin polariza-
tion, calculated for different anisotropy factors: pure hh ��=0�,
mixed heavy-light holes ��=0.5�, conduction electrons ��=1�, and
pure lh ��=2�.
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FIG. 2. Anisotropy dependence of the steady-state values Rx���
and Rz���. For ��1 �not shown in this figure�, Rz���→0 and
Rx���→ 1

2 .
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Ry�t� = ��1 −
�2

2�2 −
�2��2 − 1�

�2 � t

2T�0

�2�sin �Bt

+
�2

�

t

2T�0

cos �Bt�e−�t/2T�0
�2

, �25b�

Rz�t� = 1 − �21 − e−�t/2T�0
�2

cos �Bt

�2 , �25c�

where �B=
g�BB

� is the Larmor precession frequency induced
by the applied magnetic field. These expressions clearly
show the Gaussian time dependence of the spin components,

with a dephasing time T�0
, and the field dependence of the

steady-state values.

2. Case B� ¸x

For an in-plane magnetic field, in the high-field limit ��
�1�, the spin components can be written, in the second order
in �−1 ���0�, as

Rx
1�t� = 1 − ��2 + 1�

1 − e−��t/2T�0
�2

cos �Bt

2�2 , �26a�
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Ry
1�t� = ��1 −

�2 + 1

4�2 +
�4 + 2�2 − 3

8�2 � t

2T�0

�2�sin �Bt

+
�2 + 1

2�

t

2T�0

cos �Bt�e−��t/2T�0
�2

, �26b�

Rz
1�t� =

1

2�2 + ��1 −
1

2�2 +
�4 + 2�2 − 3

�2 � t

2T�0

�2�cos �Bt

−
�2 + 1

2�

t

2T�0

sin �Bt�e−��t/2T�0
�2

. �26c�

One can then clearly evidence a dephasing time T� =
T�0

� , with
a minimum value for pure lh.

For pure hh states ��=0�, the previous high-field expres-
sions are not valid. For �=0, the time dependence of the spin
components is totally different, as already mentioned in Ref.
11 for Rz

1�t�. The spin components are then given, in the
strong-field regime, by the following expressions:

Rx
1�t� = 1 −

1

2�2 +
1

2�2

cos��Bt +
3

2
arctan

t

��
�

�1 + � t

��
�2�3/4 , �27a�

Ry
1�t� =

sin��Bt +
1

2
arctan

t

��
�

�1 + � t

��
�2�1/4 −

1

4�2

sin��Bt +
3

2
arctan

t

��
�

�1 + � t

��
�2�3/4 ,

�27b�

Rz
1�t� =

cos��Bt +
1

2
arctan

t

��
�

�1 + � t

��
�2�1/4 +

1

2�2

−
1

2�2

cos��Bt +
3

2
arctan

t

��
�

�1 + � t

��
�2�3/4 . �27c�

A new dephasing time which depends on the value of the
applied magnetic field is defined, �� =2�T�0

=2 B
�0

T�0
, while

the longitudinal and transverse components decrease as t−3/2

and t−1/2, respectively. As observed in Fig. 5 for pure hh in
zero magnetic field, the spin z component is constant, Rz

1�t�
=1, while an in-plane magnetic field induces dephasing and
reduces the mean value of Rz

1�t� which shows an oscillatory
pattern. For Rx

1�t�, a high field is then necessary to reach a
steady-state regime where Rx

1�t� becomes close to 1. This
behavior can be easily understood: �i� if S0x=S0y =0 and
S0z�0, in zero magnetic field, the hh spins and nuclear fields
are aligned, so that no dephasing can occur, whatever the
magnitude of the nuclear field fluctuations; �ii� in the pres-
ence of a small magnetic field, of the order of the typical
nuclear field fluctuation �0, the hh spins precess around total

magnetic fields out of the z axis, so that the spin components
are sensitive to the nuclear field fluctuations, and a decrease
in the average spin amplitude then occurs; �iii� in a strong
magnetic field, the hyperfine nuclear field is screened, so that
the dephasing time �� increases and for finite values of �, the
Rx

1�t� spin amplitude tends to 1; in this regime, an initial
�S0x�0, S0y =S0z=0� spin essentially remains constant in
time.

Finally, let us compare the time dependence of the trans-
verse components �Rx

1 and Ry
1� for pure hh or lh spins, at high

field, shown in Figs. 5 and 6. One clearly observes a Gauss-
ian decay of the oscillations for lh ��=2� spins and a power-
law decay for hh ��=0� spins. The lower part of Fig. 4
shows the behavior of Rx

1���, Ry
1���, and Rz

1��� for a mixed
heavy-light hole spin. These components follow the general
trends already given for the case of a lh spin ��=2�. In Sec.
IV we will connect the above-commented theoretical results
with the expected experimental observations.

IV. DISCUSSION

A very useful tool to experimentally study the electron
spin polarization is the analysis and the measurement of the
degree of circular polarization of the photoluminescence
�PL� of samples containing p-doped QDs. In this case, after a
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nonresonant optical excitation and the subsequent relaxation
of the photocreated electron-hole pairs, a positively charged
trion is created in some QDs. This photocreated species con-
tains three particles: two antiparallel holes and one electron
with its spin pointing up or down depending on the helicity
of the circular polarization of the exciting light. Braun et al.8

evidenced that the hyperfine interaction is at the origin of the
electron spin dephasing in self-assembled QDs by analyzing
the temporal behavior of the degree of polarization of posi-
tively charged trions in PL experiments.

By analogy, one could think that the study of the decay of
the PL degree of polarization of a n-doped sample containing
QDs would give information on the hole–spin dynamics and
dephasing. However, experimental constraints for n-doped
samples are slightly different and make the final task much
more difficult. The main experimental difference is given by
the fact that the lifetime of photocreated trions is in the order
of 1 ns, and during this time the electron spin evolves with a
dephasing time in the order of 500ps; for holes, a much
longer dephasing time is expected, and then no significant
evolution during lifetime should be observed, as confirmed
by several experimental studies.31,32

To get experimental information on the hole–spin dynam-
ics, pump-probe experiments on samples containing p-doped
QDs are more appropriate, such as the measurement of the
photoinduced Faraday or Kerr rotation,33,34 or of the photo-
induced circular dichroism.28,35 In these experiments an ini-

tial hole–spin polarization is created by a resonant excitation
of charged trions and subsequent transfer of their spin polar-
ization to the hole spin. The observed Faraday or Kerr rota-
tion is related to the component of the spin polarization
along the light propagation direction �z direction�.

Another recent possibility consists to initialize a single
hole spin in a QD immerged in a diode structure, using a
resonant optical excitation of an electron-hole pair in the QD
followed by a fast electron tunneling controlled by an ap-
plied voltage. The readout of the hole–spin state is then ob-
tained by measuring the photocurrent through the diode un-
der spin–selective optical excitation of trions.14

Usually two main configurations are considered to study
the action of a magnetic field upon a phenomenon, as for
example here the dynamics of the average spin: the Faraday
configuration and the Voigt configuration. In the first one the
magnetic field is applied parallel to the direction of the pre-
viously optically created spin, meanwhile in the second one,
the magnetic field is applied perpendicular to the photocre-
ated spin.

Figure 7�a� shows the behavior of the steady-state ampli-
tude of Rz�t�T�0

� as a function of the normalized magnitude
of a Faraday magnetic field, �=B /�0. We observe that the
effect of an external field, B, applied along the z direction is
very important for the conservation of the initial hole
spin,i.e., for the quenching of the hyperfine effect on the Rz
component. A very small field, of the order of several �0
�i.e., a few mT�, suppresses the relaxation of the longitudinal
hole–spin component, Rz, when ��0. A quasi-Lorentz curve
is obtained; its amplitude is mainly fixed by the � factor and
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its linewidth is given by the hyperfine interaction coupling
strength T� for a known longitudinal Landé factor, gz. This
behavior has been recently observed in p-doped InAs/GaAs
QDs.12

Figure 7�b� shows the magnetic field dependence of the
steady-state amplitude of Rz

1�t�T�0
� for a Voigt configura-

tion. The reduced value of the magnetic field, �, is used.
Once again a very small magnetic field has an important
effect on the value of the z component of the average spin.
The main difference, here, with respect to the Faraday con-
figuration is that �=0 does not present a singular behavior.
The amplitude of all the curves decreases to zero �whatever
the value of ��, following a curve for which the amplitude is
mainly fixed by the anisotropy factor � and the half width
which is only function of the hyperfine interaction coupling
T� when the transverse Landé factor, gx, is known. Then,
from the experimental study of the magnetic field depen-
dence of the steady-state value of the average hole–spin po-
larization in Faraday and/or Voigt configuration, it is possible
to obtain information on the hole–spin dephasing time and
on the degree of purity or mixing of hole states, as shown in
Figs. 7�a� and 7�b�.

V. CONCLUSION

We have calculated the hole-nuclear hyperfine interaction
in QDs for pure hh or lh and for mixed heavy-light holes and
its consequences in the hole–spin dynamics of an ensemble
of QDs. In contrast to the electron-nuclear hyperfine interac-
tion in QDs, the hole-nuclear hyperfine interaction is highly
anisotropic for a pure hh; this anisotropy is reduced by hh-lh
mixing. We have shown also that contrary to the common
idea the hole hyperfine interaction is far from negligible be-
cause the long-range dipole-dipole term induces a coupling
which is only 1 order of magnitude smaller than the electron-
nuclear interaction. This result has an important effect on the
hole–spin dynamics and its potential use as a quantum bit,
since the hyperfine interaction is the main source of decoher-
ence, at low temperature, for holes confined in a QD.

Finally, a first criterion to reduce decoherence in III-V
compounds is to obtain isotropic and strainless QDs. In this
case, the hole spin is in a pure hh state and, for a hole spin
polarized along the z growth axis, all decoherence phenom-
ena induced by hyperfine coupling are minimized or sup-
pressed. Nonetheless, decoherence processes are still pos-
sible for transverse spin components. Due to the small value
of �0, the dispersion of the nuclear field distribution, a very
small magnetic field can be used to screen the hole hyperfine
coupling. Another possibility to reduce decoherence is to
consider II-VI QDs, with a majority of nonmagnetic nuclei;
the hyperfine coupling is totally canceled in a QD made ex-
clusively with isotopes without nuclear spin.
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APPENDIX A

The hyperfine interaction of a nuclear spin with an elec-
tron in the valence band has a dipole-dipole nature and can
be written17 as

Hdd�I�� = 2�B
�I

I
I� · � ��

�3 −
s�

�3 + 3
���s� · ���

�5 � , �A1�

where �B is the Bohr magneton and �I is the nuclear mag-

netic moment; I� is the nuclear spin operator; �� =�� � p� / � and
s� are the orbital momentum and spin operators, respectively,
and �� is the electron position vector with origin at the
nucleus position.

Using notations similar to those of Ref. 10, the dipole-
dipole Hamiltonian can be written as

Hdd�I�� = 2�B
�I

I
�V1 − V2� , �A2�

where V1=
�m

�3 Im, V2= Pmn����smIn, and Pmn����=
�2�mn−3�m�n

�5 ,
with m ,n=x ,y ,z. In the expression of Hdd, the summation is
done over all possible values of m and n.

The electron wave function is defined as ��r��
=�
	�r��u�r��, where u�r�� is the Bloch function, normalized
on a unit cell of volume 
, and 	�r�� is the quantum-dot
envelope wave function, normalized on the sample volume �r�
is the space position vector�. 	�r�� is related to its Fourier
transform ��k�� by the relation

	�r�� =
1

�2��3/2� ��k��eik�·r�dk� . �A3�

We consider the calculation of the matrix elements of Hdd
in the basis formed by the valence-band states ��3/2= �J
=3 /2,Jz= �3 /2� and ��1/2= �J=3 /2,Jz= �1 /2�. First, this
leads to the calculation of integrals of the form

Q̃ijmn = 
� d��Fi����Fj����Pmn����	��R� + ���	�R� + ��� ,

�A4a�

T̃mij =



�
� d��Fi����	��R� + ���

��� ∧ p� �m
�3 Fj����	�R� + ��� .

�A4b�

�� =0� corresponds to the position of the nucleus under study,

located at r�=R� . Fi���� are the orbital functions of p symmetry,
�X�, �Y�, and �Z� for i=x, y, and z, respectively. These inte-
grals can be rewritten as
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Q̃ijmn =



�2��3� dK� dq����K� −
q�

2
���K� +

q�

2
�eiq� ·R�Qijmn,

�A5a�

T̃mij =



�2��3� dK� dq����K� −
q�

2
���K� +

q�

2
�eiq� ·R�Tmij .

�A5b�

To calculate those quantities, it is convenient to first calculate
the integrals

Qijmn =� d��Fi����Fj����Pmn����eiq� ·�� , �A6a�

Tmij =
1

�
� dr�Fi����eiq� ·�� ��� ∧ p� �m

�3 Fj���� . �A6b�

As described in Ref. 10, one can enclose the nucleus in a
sphere of radius R0 so that the inequalities R0�a0 and qR0
�1 are simultaneously satisfied. This leads to the relations

Qijmn = Aijmn + Bijmn and Tmij = iCmij + iDmij . �A7�

The tensors A and D are related to integrals over the cells
corresponding to r�R0, and B and C to integrals over the
cells corresponding to r�R0 �similar expressions can be de-

fined for Q̃ijmn= Ãijmn+ B̃ijmn and T̃mij = iC̃mij + iD̃mij�. These
tensors are given by Gryncharova and Perel,10

Aijmn =
2

5
	 1

�3
��ij −
3

2
��im� jn + �in� jm�� , �A8a�

Bijmn = −
�ij




16�

3�2
��mn − 3

qmqn

q2 � , �A8b�

Cmij =
1




16�

3�2
��mij +

3

2

��mniqnqj − �mnjqnqi�
q2 � , �A8c�

Dmij = − �mij	 1

�3
 , �A8d�

with 
 1
�3 �=�
d��X2���� 1

�3 . �mij is the unit antisymmetric tensor
of rank three.

The short-range contributions Ãijmn and D̃mij to integrals
Q̃ijmn and T̃mij, respectively, can be deduced easily:

Ãijmn = 
Aijmn�	�R� ��2 and D̃mij = 
Dmij�	�R� ��2.

�A9�

The long-range contributions B̃ijmn and C̃mij are more
complicated integrals. Nonetheless, one can estimate their
order of magnitude by assuming a Gaussian envelope func-
tion 	�r��= 1

�3/4a3/2 e−r2/2a2
for simplicity. One can then calcu-

late

B̃ijmn = − �ij
16�

3�2
��mn − 3

RmRn

R2 ��	�R� ��2, �A10a�

C̃mij =
16�

3�2
��mij −

3

2

�mniRnRj − �mnjRnRi

R2 ��	�R� ��2,

�A10b�

with the Ri �i=x ,y ,z� being the components of vector R� . The
ratio between the short- and long-range contributions is of
the order of �=

�2
16�

 1

�3 �. For InAs and GaAs compounds,

��30–60, so that the long-range contributions B̃ijmn and
C̃mij can be neglected.

Finally, the dipole-dipole Hamiltonian, between a valence
electron and a nucleus at position R� and with nuclear spin I�,
is �in the basis ��+3/2 ,�+1/2 ,�−1/2 ,�−3/2��

8�B�I

5I
�	�R� ��2
	 1

�3
�
Iz ��R� �

Ix − iIy

�3
0 0

���R� �
Ix + iIy

�3
���R� ��2

Iz

3
−

2

3
���R� ��2�Ix − iIy� 0

0 −
2

3
���R� ��2�Ix + iIy� − ���R� ��2

Iz

3
���R� �

Ix − iIy

�3

0 0 ��R� �
Ix + iIy

�3
− Iz

� , �A11�

with ��R� �= 	� �R� �
	�R� �

, where 	�R� � and 	� �R� � are the envelope functions of the ��3/2 and ��1/2 valence electrons, respectively.
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APPENDIX B

Based on the theory of Luttinger-Kohn and Bir-Pikus, the valence-band structure of a strained quantum dot can be described
by the following 6�6 Hamiltonian:

�
Ev0 − P − Q �2S − R 0 − S − �2R

�2S� Ev0 − P + Q 0 − R − �2Q �3S

− R� 0 Ev0 − P + Q − �2S − �3S� − �2Q

0 − R� − �2S� Ev0 − P − Q − �2R� S�

− S� − �2Q� − �3S − �2R Ev0 − P − �S0 0

− �2R� �3S� − �2Q� − S 0 Ev0 − P − �S0

�
�3

2
,
3

2



�3

2
,
1

2



�3

2
,−

1

2



�3

2
,−

3

2



�1

2
,
1

2



�1

2
,−

1

2



. �B1�

The valence Bloch functions are defined as

u+3/2 = �3

2
,
3

2

 =

�X + iY�
�2

�↑� , �B2a�

u+1/2 = �3

2
,
1

2

 =

�X + iY��↓� − 2�Z��↑�
�6

, �B2b�

u−1/2 = �3

2
,−

1

2

 =

�X − iY��↑� + 2�Z��↓�
�6

, �B2c�

u−3/2 = �3

2
,−

3

2

 =

�X − iY�
�2

�↓� , �B2d�

u+1/2� = �1

2
,
1

2

 =

�X + iY��↓� + �Z��↑�
�3

, �B2e�

u−1/2� = �1

2
,−

1

2

 =

�X + iY��↑� − �Z��↓�
�3

�B2f�

��X�, �Y�, and �Z� are orbital functions with symmetry x, y,
and z; �↑ � and �↓ � are the spin components, quantized along
the z axis�.

Ev0 is the �8 valence-band edge and is aligned relative to
the valence band of the dot or matrix material �the confine-
ment effect is included in the spatial dependence of Ev0�. �S0
is the spin-orbital split-off energy. The Hamiltonian matrix
elements are given as a sum of kinetic terms and its strain
counterpart,

P = � �2

2m0
��1�kx

2 + ky
2 + kz

2� − av��xx + �yy + �zz� ,

�B3a�

Q = � �2

2m0
��2�kx

2 + ky
2 − 2kz

2� −
bv

2
��xx + �yy − 2�zz� ,

�B3b�

R = � �2

2m0
��3��2�kx

2 − ky
2� − 2i�3kxky� −

�3

2
bv��xx − �yy�

+ idv�xy , �B3c�

S = � �2

2m0
��6�3�kx − iky�kz −

dv

�2
��zx − i�yz� . �B3d�

�1, �2, and �3 are the modified Luttinger parameters, m0 is
the free electron mass, av is the valence-band hydrostatic
deformation potential, and bv and dv are the shear deforma-
tion potentials along the �001� and �111� axes.

APPENDIX C

In a QD, with a hole-nuclear hyperfine interaction defined
by the anisotropy factor �, and in the presence of a normal-
ized magnetic field �= B

�0
, the time-dependent expressions of

the different spin components are as follows. For a magnetic
field applied along z,

Rx�t� = �
−�

+�

dx�
−�

+�

dy�
−�

+�

dzG��x,�y,� + z,��e−�x2+y2+z2�,

�C1a�

Ry�t� = �
−�

+�

dx�
−�

+�

dy�
−�

+�

dzF�� + z,�x,�y,��e−�x2+y2+z2�,

�C1b�
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Rz�t� = �
−�

+�

dx�
−�

+�

dy�
−�

+�

dzG�� + z,�x,�y,��e−�x2+y2+z2�.

�C1c�

For a magnetic field applied along x,

Rx
1�t� = �

−�

+�

dx�
−�

+�

dy�
−�

+�

dzG�� + �x,�y,z,��e−�x2+y2+z2�,

�C2a�

Ry
1�t� = �

−�

+�

dx�
−�

+�

dy�
−�

+�

dzF�� + �x,�y,z,��e−�x2+y2+z2�

= Rz
2�t� , �C2b�

Rz
1�t� = �

−�

+�

dx�
−�

+�

dy�
−�

+�

dzG�z,� + �x,�y,��e−�x2+y2+z2�,

�C2c�

Ry
2�t� = �

−�

+�

dx�
−�

+�

dy�
−�

+�

dzG��y,z,� + �x,��e−�x2+y2+z2�,

�C2d�

with �= t
T�0

.

The functions G and F are defined by

F�a,b,c,d� =
1

�3/2
a

�a2 + b2 + c2
sin�d�a2 + b2 + c2� ,

�C3a�

G�a,b,c,d� =
1

�3/2
a2 + �b2 + c2�cos�d�a2 + b2 + c2�

a2 + b2 + c2 .

�C3b�
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